def build_lstm(input_shape):
model = Sequential()
model.add(Masking(input_shape=input_shape, mask_value=-1.))
# model.add(GRU(128, return_sequences=True))
model.add(GRU(128, return_sequences=False))
# Add dropout if overfitting
# model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
return model
评论列表
文章目录