def build_model(self):
assert self.seq_len>1
assert len(self.alphabet.alphabet)>0
bits_per_char = self.alphabet.nb_chars
rnn_size = bits_per_char
model = Sequential()
model.add( Masking( mask_value=0, input_shape=(self.seq_len, bits_per_char), name='input_layer' ) )
model.add( recurrent.LSTM( rnn_size, input_shape=(self.seq_len, bits_per_char), return_sequences=False ) )
model.add( Dense( units=rnn_size, activation='sigmoid') )
model.add( Dense( units=bits_per_char, activation='softmax', name='output_layer') )
model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
return model
评论列表
文章目录