def steering_net():
model = Sequential()
model.add(Convolution2D(24, 5, 5, init = normal_init, subsample= (2, 2), name='conv1_1', input_shape=(66, 200, 3)))
model.add(Activation('relu'))
model.add(Convolution2D(36, 5, 5, init = normal_init, subsample= (2, 2), name='conv2_1'))
model.add(Activation('relu'))
model.add(Convolution2D(48, 5, 5, init = normal_init, subsample= (2, 2), name='conv3_1'))
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3, init = normal_init, subsample= (1, 1), name='conv4_1'))
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3, init = normal_init, subsample= (1, 1), name='conv4_2'))
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(1164, init = normal_init, name = "dense_0"))
model.add(Activation('relu'))
#model.add(Dropout(p))
model.add(Dense(100, init = normal_init, name = "dense_1"))
model.add(Activation('relu'))
#model.add(Dropout(p))
model.add(Dense(50, init = normal_init, name = "dense_2"))
model.add(Activation('relu'))
#model.add(Dropout(p))
model.add(Dense(10, init = normal_init, name = "dense_3"))
model.add(Activation('relu'))
model.add(Dense(1, init = normal_init, name = "dense_4"))
model.add(Lambda(atan_layer, output_shape = atan_layer_shape, name = "atan_0"))
return model
model.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录