def adverse_model(discriminator):
train_input = Input(shape=(None,), dtype='int32')
hypo_input = Input(shape=(None,), dtype='int32')
def margin_opt(inputs):
assert len(inputs) == 2, ('Margin Output needs '
'2 inputs, %d given' % len(inputs))
return K.log(inputs[0]) + K.log(1-inputs[1])
margin = Lambda(margin_opt, output_shape=(lambda s : (None, 1)))\
([discriminator(train_input), discriminator(hypo_input)])
adverserial = Model([train_input, hypo_input], margin)
adverserial.compile(loss=minimize, optimizer='adam')
return adverserial
评论列表
文章目录