def save_layers_cmp(is_power_point = False):
total_df = None
for layer in [20, 32, 44, 56, 110]:
df = pd.read_csv("../output/cifar10classifier_resnet%d.csv" % layer)
df["train_error"] = 1 - df["train_accuracy"]
df["test_error"] = 1 - df["test_accuracy"]
df = df[df["epoch"] < 150]
if total_df is None:
total_df = df
else:
total_df = pd.concat([total_df, df])
total_df["name"] = total_df["name"].str.split("_").str.get(-1)
ax = sns.pointplot(x="epoch", y="test_error", hue="name", data=total_df, scale=0.2)
if is_power_point:
ax.legend(loc="lower left", markerscale=9.0, fontsize=20)
else:
ax.legend(markerscale=3.0)
ax.set(ylim=(0, 0.2))
ax.set_xticklabels([i if i % 10 == 0 else "" for i in range(150)])
ax.set(xlabel='epoch', ylabel='error(%)')
ax.get_figure().savefig("../figures/resnet.layers.png")
sns.plt.close()
评论列表
文章目录