def plot_similardishes(idx,xlim):
match = yum_ingr2.iloc[yum_cos[idx].argsort()[-21:-1]][::-1]
newidx = match.index.get_values()
match['cosine'] = yum_cos[idx][newidx]
match['rank'] = range(1,1+len(newidx))
label1, label2 =[],[]
for i in match.index:
label1.append(match.ix[i,'cuisine'])
label2.append(match.ix[i,'recipeName'])
fig = plt.figure(figsize=(10,10))
ax = sns.stripplot(y='rank', x='cosine', data=match, jitter=0.05,
hue='cuisine',size=15,orient="h")
ax.set_title(yum_ingr2.ix[idx,'recipeName']+'('+yum_ingr2.ix[idx,'cuisine']+')',fontsize=18)
ax.set_xlabel('Flavor cosine similarity',fontsize=18)
ax.set_ylabel('Rank',fontsize=18)
ax.yaxis.grid(color='white')
ax.xaxis.grid(color='white')
for label, y,x, in zip(label2, match['rank'],match['cosine']):
ax.text(x+0.001,y-1,label, ha = 'left')
ax.legend(loc = 'lower right',prop={'size':14})
ax.set_ylim([20,-1])
ax.set_xlim(xlim)
recipe_recommendation.py 文件源码
python
阅读 25
收藏 0
点赞 0
评论 0
评论列表
文章目录