def visualize_hist_pairplot(X,y,selected_feature1,selected_feature2,features,diag_kind):
"""
Visualize the pairwise relationships (Histograms and Density Funcions) between classes and respective attributes
Keyword arguments:
X -- The feature vectors
y -- The target vector
selected_feature1 - First feature
selected_feature1 - Second feature
diag_kind -- Type of plot in the diagonal (Histogram or Density Function)
"""
#create data
joint_data=np.column_stack((X,y))
column_names=features
#create dataframe
df=pd.DataFrame(data=joint_data,columns=column_names)
#plot
palette = sea.hls_palette()
splot=sea.pairplot(df, hue="Y", palette={0:palette[2],1:palette[0]},vars=[selected_feature1,selected_feature2],diag_kind=diag_kind)
splot.fig.suptitle('Pairwise relationship: '+selected_feature1+" vs "+selected_feature2)
splot.set(xticklabels=[])
# plt.subplots_adjust(right=0.94, top=0.94)
#save fig
output_dir = "img"
save_fig(output_dir,'{}/{}_{}_hist_pairplot.png'.format(output_dir,selected_feature1,selected_feature2))
# plt.show()
visualization.py 文件源码
python
阅读 32
收藏 0
点赞 0
评论 0
评论列表
文章目录