def get_training_image():
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
import seaborn as sns
import StringIO
fig = Figure()
df = pd.DataFrame.from_dict(get_flattened_training_data())
features = [f for f in df.columns if f not in ['mac', 'location']]
df = df.rename(columns=dict(zip(features, [POWER_SLAVE_PREFIX + f for f in features])))
sns_plot = sns.pairplot(df, hue="location", vars=[POWER_SLAVE_PREFIX + f for f in features])
png_output = StringIO.StringIO()
sns_plot.savefig(png_output, format='png')
canvas = FigureCanvas(fig)
canvas.print_png(png_output)
print png_output.getvalue()
return
评论列表
文章目录