def plot_distance_corrs(subjects, axes, exp):
for subj, ax in zip(subjects, axes):
res_fname = "correlation_analysis/{}_{}_ifs.pkz".format(subj, exp)
res = moss.load_pkl(res_fname)
x = res.distance_thresh
for dim, color, marker in zip(["3D", "2D"], [".5", ".2"], ["x", "+"]):
same, diff = res.corr_distance[dim].T
ax.plot(x, same - diff, "o-", color=color, ms=3, clip_on=False)
sig = res.corr_distance_pctiles[dim] > 95
stary = -.005 if exp == "dots" else -.0025
ax.plot(x[sig], np.ones(sig.sum()) * stary,
marker=marker, ls="", mew=.35, mec=".2", ms=3)
ylim = (-.01, .08) if exp == "dots" else (-.005, .04)
yticks = np.array([0, .01, .02, .03, .04])
yticks = yticks * 2 if exp == "dots" else yticks
ax.set(xlim=(-2, 42), ylim=ylim, yticks=yticks)
sns.despine(ax=ax, trim=True)
ylabel = "Subnetwork strength\n($r_{\mathrm{same}} - r_{\mathrm{diff}}$)"
plt.setp(axes[1:7], yticklabels=[])
axes[0].set_ylabel(ylabel)
if exp == "dots":
plt.setp(axes[8:], yticklabels=[])
plt.setp(axes[:7], xticklabels=[])
axes[7].set_ylabel(ylabel)
评论列表
文章目录