def get_graph_features_mean(col_list):
am = analyse_mean.set_index('features')
am = am.stack().reset_index()
am.columns = ['features', 'type', 'score']
plt.figure(figsize=(18,6));
if isinstance(bench_features_bool, list):
print "List"
sns.barplot('score', 'features', data=am[am.features.isin(col_list)], hue='type', hue_order=['error','good'])
else:
sns.barplot('score', 'features', data=am[am.features == col_list], hue='type', hue_order=['error','good'])
# plt.xticks(rotation=40)
plt.legend()
# base : # 0.9412 ***
# without : u'is_mister_word_1b', u'is_mister_word_2b', u'is_mister_word_1a', u'is_mister_word_2a' # 0.9344
# without : word_encoded' # 0.9268
评论列表
文章目录