def traffic_districution(self):
data_dir = g_singletonDataFilePath.getTrainDir()
df = self.load_trafficdf(data_dir)
print df['traffic'].describe()
# sns.distplot(self.gapdf['gap'],kde=False, bins=100);
df['traffic'].plot(kind='hist', bins=100)
plt.xlabel('Traffic')
plt.title('Histogram of Traffic')
return
# def disp_gap_bydistrict(self, disp_ids = np.arange(34,67,1), cls1 = 'start_district_id', cls2 = 'time_id'):
# # disp_ids = np.arange(1,34,1)
# plt.figure()
# by_district = self.gapdf.groupby(cls1)
# size = len(disp_ids)
# # size = len(by_district)
# col_len = row_len = math.ceil(math.sqrt(size))
# count = 1
# for name, group in by_district:
# if not name in disp_ids:
# continue
# plt.subplot(row_len, col_len, count)
# group.groupby(cls2)['gap'].mean().plot()
# count += 1
# return
visualize_traindata.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录