def visualize_pca2D(X,y):
"""
Visualize the first two principal components
Keyword arguments:
X -- The feature vectors
y -- The target vector
"""
pca = PCA(n_components = 2)
principal_components = pca.fit_transform(X)
palette = sea.color_palette()
plt.scatter(principal_components[y==0, 0], principal_components[y==0, 1], marker='s',color='green',label="Paid", alpha=0.5,edgecolor='#262626', facecolor=palette[1], linewidth=0.15)
plt.scatter(principal_components[y==1, 0], principal_components[y==1, 1], marker='^',color='red',label="Default", alpha=0.5,edgecolor='#262626''', facecolor=palette[2], linewidth=0.15)
leg = plt.legend(loc='upper right', fancybox=True)
leg.get_frame().set_alpha(0.5)
plt.title("Two-Dimensional Principal Component Analysis")
plt.tight_layout
#save fig
output_dir='img'
save_fig(output_dir,'{}/pca2D.png'.format(output_dir))
visualization.py 文件源码
python
阅读 34
收藏 0
点赞 0
评论 0
评论列表
文章目录