def get_confusion(y_test, y_pred):
cm = confusion_matrix(y_test, y_pred)
cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
label_unique = y_test.unique()
# #Graph Confusion Matrix
tick_marks = np.arange(len(label_unique))
# plt.figure(figsize=(8,6))
sns.heatmap(cm_normalized, cmap='Greens',annot=True,linewidths=.5)
# plt.title('confusion matrix')
plt.xlabel('Predicted label')
plt.ylabel('True label')
plt.xticks(tick_marks + 0.5, list(label_unique))
plt.yticks(tick_marks + 0.5,list(reversed(list(label_unique))) , rotation=0)
#
# plt.imshow(cm_normalized, interpolation='nearest', cmap='Greens')
# plt.title('confusion matrix')
# plt.colorbar()
# tick_marks = np.arange(len(label_unique))
# plt.xticks(tick_marks + 0.5, list(reversed(list(label_unique))))
# plt.yticks(tick_marks + 0.5,list(label_unique) , rotation=0)
# plt.tight_layout()
# plt.ylabel('True label')
# plt.xlabel('Predicted label')
评论列表
文章目录