house_prices.py 文件源码

python
阅读 24 收藏 0 点赞 0 评论 0

项目:HousePrices 作者: MizioAnd 项目源码 文件源码
def outlier_prediction(x_train, y_train):
        # Use built-in isolation forest or use predicted vs. actual
        # Compute squared residuals of every point
        # Make a threshold criteria for inclusion

        # The prediction returns 1 if sample point is inlier. If outlier prediction returns -1
        rng = np.random.RandomState(42)
        clf_all_features = IsolationForest(max_samples=100, random_state=rng)
        clf_all_features.fit(x_train)

        # Predict if a particular sample is an outlier using all features for higher dimensional data set.
        y_pred_train = clf_all_features.predict(x_train)

        # Exclude suggested outlier samples for improvement of prediction power/score
        outlier_map_out_train = np.array(map(lambda x: x == 1, y_pred_train))
        x_train_modified = x_train[outlier_map_out_train, ]
        y_train_modified = y_train[outlier_map_out_train, ]

        return x_train_modified, y_train_modified
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号