def main():
global_start_time = time.time()
print('> Loading data... ')
# mm_scaler, X_train, y_train, X_test, y_test = load_data()
X_train, y_train, X_test, y_test = load_data()
print('> Data Loaded. Compiling...')
model = build_model()
print(model.summary())
# keras.callbacks.History????epochs?loss?val_loss
hist = History()
model.fit(X_train, y_train, batch_size=Conf.BATCH_SIZE, epochs=Conf.EPOCHS, shuffle=True,
validation_split=0.05, callbacks=[hist])
# ???????loss?val_loss
print(hist.history['loss'])
print(hist.history['val_loss'])
# ?????loss?val_loss
plot_loss(hist.history['loss'], hist.history['val_loss'])
# predicted = predict_by_days(model, X_test, 20)
predicted = predict_by_day(model, X_test)
print('Training duration (s) : ', time.time() - global_start_time)
# predicted = inverse_trans(mm_scaler, predicted)
# y_test = inverse_trans(mm_scaler, y_test)
# ????
model_evaluation(pd.DataFrame(predicted), pd.DataFrame(y_test))
# ???????
model_visualization(y_test, predicted)
co_lstm_predict_day.py 文件源码
python
阅读 27
收藏 0
点赞 0
评论 0
评论列表
文章目录