def train():
model = build_multi_1d_cnn_model(BATCH_SIZE,
TIME_STEP,
INPUT_DIM,
OUTPUT_DIM,
dropout=0.4,
kernel_size=3,
pooling_size=2,
conv_dim=(128, 64, 32),
stack_loop_num=2)
# deal with x,y
# x_train = x
model.fit(x_train, y_train, validation_split=0, epochs=50, callbacks=[TensorBoard(log_dir='./cnn_dir')], batch_size=10)
# for index,y_dat in enumerate(y):
# print('Run test on %s' %(index))
# # print(y_dat.reshape(3,1))
# model.fit(np.array([x[index]]),np.array([y_dat.reshape(1,3)]),validation_data=(np.array([x[index]]),np.array([y_dat.reshape(1,3)])),epochs=100,callbacks=[TensorBoard()])
# model.save(MODEL_PATH)
# x_pred = model.predict(np.array([x[index]]))
# print(x_pred,x_pred.shape)
# print(np.array([y_dat.reshape(1,3)]))
import random
randomIndex = random.randint(0, SAMPLE_NUM)
print('Selecting %s as the sample' % (randomIndex))
pred = model.predict(x_train[randomIndex:randomIndex + 1])
print(pred)
print(y_train[randomIndex])
model.save(MODEL_PATH)
评论列表
文章目录