def _get_callbacks(self):
callbacks = [self.model.optimizer.get_lr_scheduler()]
folder_name = self.get_name()
self_path = os.path.join(self.checkpoint_path, folder_name)
if self.checkpoint_path:
if not os.path.exists(self.checkpoint_path):
print("Make folder to save checkpoint file to {}".format(self.checkpoint_path))
os.mkdir(self.checkpoint_path)
if not os.path.exists(self_path):
os.mkdir(self_path)
file_name = "_".join(["model_weights", "{epoch:02d}", "{val_acc:.2f}"]) + ".h5"
save_callback = ModelCheckpoint(os.path.join(self_path, file_name), save_weights_only=True)
callbacks += [save_callback]
if self.tensor_board:
board_path = os.path.join(self.checkpoint_path, "tensor_board")
self_board_path = os.path.join(board_path, folder_name)
if not os.path.exists(board_path):
print("Make folder to visualize on TensorBoard to {}".format(board_path))
os.mkdir(board_path)
if not os.path.exists(self_board_path):
os.mkdir(self_board_path)
callbacks += [TensorBoard(self_board_path)]
print("invoke tensorboard at {}".format(board_path))
return callbacks
评论列表
文章目录