def train_generator(nsteps):
mean_loss = 0.0
for i in range(1,nsteps):
batch_indeces = np.random.randint(0,O_train.shape[0],args.batch_size)
o_in = O_train[batch_indeces,:,:,:]
t_in = T_train[batch_indeces,:,:,:]
y_in = Y_train[batch_indeces,:,:,:]
r = generator.fit([o_in,t_in,y_in], [y_in, d_comb],
#callbacks=[TensorBoard(log_dir=args.tblog + '_G', write_graph=False)],
verbose=0)
loss = r.history['loss'][0]
mean_loss = mean_loss + loss
return mean_loss / nsteps
评论列表
文章目录