def __init__(self, output_dir, num_identities, batch_size=32, use_yale=False,
use_jaffe=False):
"""
Constructor for a GenerateIntermediate object.
Args:
output_dir (str): Directory to save intermediate results in.
num_identities (int): Number of identities in the training set.
Args: (optional)
batch_size (int): Batch size to use when generating images.
"""
super(Callback, self).__init__()
self.output_dir = output_dir
self.num_identities = num_identities
self.batch_size = batch_size
self.use_yale = use_yale
self.use_jaffe = use_jaffe
self.parameters = dict()
# Sweep through identities
self.parameters['identity'] = np.eye(num_identities)
if use_yale:
# Use pose 0, lighting at 0deg azimuth and elevation
self.parameters['pose'] = np.zeros((num_identities, NUM_YALE_POSES))
self.parameters['lighting'] = np.zeros((num_identities, 4))
for i in range(0, num_identities):
self.parameters['pose'][i,0] = 0
self.parameters['lighting'][i,1] = 1
self.parameters['lighting'][i,3] = 1
else:
# Make all have neutral expressions, front-facing
self.parameters['emotion'] = np.empty((num_identities, Emotion.length()))
self.parameters['orientation'] = np.zeros((num_identities, 2))
for i in range(0, num_identities):
self.parameters['emotion'][i,:] = Emotion.neutral
self.parameters['orientation'][i,1] = 1
评论列表
文章目录