def LSTM(self, argsDict):
self.paras.batch_size = argsDict["batch_size"]
self.paras.model['dropout'] = argsDict['dropout']
self.paras.model['activation'] = argsDict["activation"]
self.paras.model['optimizer'] = argsDict["optimizer"]
self.paras.model['learning_rate'] = argsDict["learning_rate"]
print(self.paras.batch_size, self.paras.model['dropout'], self.paras.model['activation'], self.paras.model['optimizer'], self.paras.model['learning_rate'])
model = self.lstm_model()
model.fit(self.train_x, self.train_y,
batch_size=self.paras.batch_size,
epochs=self.paras.epoch,
verbose=0,
callbacks=[EarlyStopping(monitor='loss', patience=5)]
)
score, mse = model.evaluate(self.test_x, self.test_y, verbose=0)
y_pred=model.predict(self.test_x)
reca=Recall_s(self.test_y,y_pred)
return -reca
Stock_Prediction_Model_Stateless_LSTM.py 文件源码
python
阅读 26
收藏 0
点赞 0
评论 0
评论列表
文章目录