def train(self, X_train, V, seed):
X_train = sequence.pad_sequences(X_train, maxlen=self.max_len)
np.random.seed(seed)
X_train = np.random.permutation(X_train)
np.random.seed(seed)
V = np.random.permutation(V)
print("Train...CNN module")
#history = self.model.fit({'input': X_train, 'output': V},
# verbose=0, batch_size=self.batch_size, nb_epoch=self.nb_epoch, shuffle=True, validation_split=0.1, callbacks=[EarlyStopping(monitor='val_loss', patience=0)])
history = self.model.fit(X_train,y=V,batch_size=self.batch_size,nb_epoch=self.nb_epoch, shuffle=True, validation_split=0.1, callbacks=[EarlyStopping(monitor='val_loss', patience=0)])
cnn_loss_his = history.history['loss']
cmp_cnn_loss = sorted(cnn_loss_his)[::-1]
if cnn_loss_his != cmp_cnn_loss:
self.nb_epoch = 1
return history
评论列表
文章目录