def EES_train():
EES = model_EES16()
EES.compile(optimizer=adam(lr=0.0003), loss='mse')
print EES.summary()
data, label = pd.read_training_data("./train.h5")
val_data, val_label = pd.read_training_data("./val.h5")
checkpoint = ModelCheckpoint("EES_check.h5", monitor='val_loss', verbose=1, save_best_only=True,
save_weights_only=False, mode='min')
callbacks_list = [checkpoint]
history_callback = EES.fit(data, label, batch_size=64, validation_data=(val_data, val_label),
callbacks=callbacks_list, shuffle=True, nb_epoch=200, verbose=1)
pandas.DataFrame(history_callback.history).to_csv("history.csv")
EES.save_weights("EES_final.h5")
评论列表
文章目录