def validate(models, dataset, arg, cuda=False):
criterion = nn.MSELoss()
losses = []
batcher = dataset.get_batcher(shuffle=True, augment=False)
for b, (x, y) in enumerate(batcher, 1):
x = V(th.from_numpy(x).float()).cuda()
y = V(th.from_numpy(y).float()).cuda()
# Ensemble average
logit = None
for model, _ in models:
model.eval()
logit = model(x) if logit is None else logit + model(x)
logit = th.div(logit, len(models))
loss = criterion(logit, y)
losses.append(loss.data[0])
return np.mean(losses)
评论列表
文章目录