def calc_gradient_penalty(netD, real_data, fake_data, sketch):
alpha = torch.rand(opt.batchSize, 1, 1, 1)
alpha = alpha.cuda() if opt.cuda else alpha
interpolates = alpha * real_data + ((1 - alpha) * fake_data)
if opt.cuda:
interpolates = interpolates.cuda()
interpolates = Variable(interpolates, requires_grad=True)
disc_interpolates = netD(interpolates, Variable(sketch))[0]
gradients = grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size()).cuda() if opt.cuda else torch.ones(
disc_interpolates.size()),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * opt.gpW
return gradient_penalty
评论列表
文章目录