def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = Variable(data, requires_grad=True), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
# Display the gradients
plt.clf()
plt.subplot(211); plt.hist(forward_grad.ravel()); plt.title("Features magnitude")
plt.subplot(212); plt.hist(backward_grad.ravel()); plt.title("Gradients")
plt.show(block=False)
plt.pause(0.01)
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data[0]))
评论列表
文章目录