def predict_result():
ser = serial.Serial( # ????????????
port='COM6',
baudrate=1200,
parity=serial.PARITY_ODD,
stopbits=serial.STOPBITS_TWO,
bytesize=serial.SEVENBITS
)
serial_data = []
plt.xlim(0, 100)
plt.ylim(300, 700)
plt.title('GSR')
plt.ion()
i = 0
j = 0
id = 0
while True:
line = ser.readline()
line = int(line)
serial_data.append(line)
if i > 100:
plt.xlim(i - 100, i)
plt.plot(serial_data)
i += 1
j += 1
if j >= 50:
clf = joblib.load('model\\happy_model.m')
select = joblib.load('model\\vector_select.m')
vector = getattr.get_vector(serial_data)
new_vector = select.transform(vector)
print(new_vector)
result = clf.predict(new_vector)
if result[0] == '2':
clf = joblib.load('model\\sad_model.m')
result = clf.predict(new_vector)
j = 0
plt.plot([i, i], [300, 700], 'r--')
if result[0] == '1':
plt.annotate('happy', xy=(i, 600), xytext=(i - 10, 600), arrowprops=dict(facecolor='red', shrink=0.05))
res = 1
database.insert(id, res)
elif result[0] == '2':
plt.annotate('normal', xy=(i, 600), xytext=(i - 10, 600), arrowprops=dict(facecolor='blue', shrink=0.05))
res = 0
database.insert(id, res)
else:
plt.annotate('sad', xy=(i, 600), xytext=(i - 10, 600),arrowprops=dict(facecolor='black', shrink=0.05))
res = 2
database.insert(id, res)
print(result)
id += 1
plt.pause(0.001)
评论列表
文章目录