def run(out_name):
V = vis.visualizer()
# Assumes that generic_lpu_0_input.h5 and generic_lpu_1_input.h5
# contain the same data:
V.add_LPU('./data/generic_lpu_0_input.h5', LPU='Sensory', is_input=True)
V.add_plot({'type': 'waveform', 'uids': [['sensory_0']], 'variable':'I'},
'input_Sensory')
for i in [0, 1]:
G = nx.read_gexf('./data/generic_lpu_%s.gexf.gz' % i)
neu_proj = sorted([k for k, n in G.node.items() if \
n['name'][:4] == 'proj' and \
n['class'] == 'LeakyIAF'])
N = len(neu_proj)
V.add_LPU('generic_lpu_%s_%s_output.h5' % (i, out_name),
'Generic LPU %s' % i,
gexf_file='./data/generic_lpu_%s.gexf.gz' % i)
V.add_plot({'type': 'raster', 'uids': [neu_proj],
'variable': 'spike_state',
'yticks': range(1, 1+N),
'yticklabels': neu_proj, 'title': 'Output'},
'Generic LPU %s' % i)
V.rows = 3
V.cols = 1
V.fontsize = 8
V.out_filename = '%s.mp4' % out_name
V.codec = 'mpeg4'
V.xlim = [0, 1.0]
V.run()
#V.run('%s.png' % out_name)
# Run the visualizations in parallel:
评论列表
文章目录