def paper_figure1():
"""
graph data g come from Jure Leskovec(2016) Higher-order organization of complex networks Fig 1
:return: None
"""
g = nx.DiGraph()
g.add_edge(1, 2)
g.add_edge(1, 3)
g.add_edge(1, 4)
g.add_edge(1, 5)
g.add_edge(1, 6)
g.add_edge(2, 1)
g.add_edge(2, 3)
g.add_edge(2, 4)
g.add_edge(2, 5)
g.add_edge(6, 2)
g.add_edge(6, 7)
g.add_edge(7, 2)
g.add_edge(7, 6)
g.add_edge(8, 2)
g.add_edge(8, 6)
g.add_edge(8, 9)
g.add_edge(8, 10)
g.add_edge(9, 6)
g.add_edge(9, 7)
g.add_edge(9, 8)
g.add_edge(9, 10)
# W = HigherOrderNetwork.motif_m7(g)
# cluster, condv, condc, order = HigherOrderNetwork.spectral_partitioning(W)
# print("\n\npaper figure1's result")
# print('condc: ', condc)
# print('cluster\n', cluster)
# # print(list(nx.all_neighbors(g, 2)))
# HigherOrderNetwork.count_m1(g)
# HigherOrderNetwork.count_m2(g)
# HigherOrderNetwork.count_m3(g)
# HigherOrderNetwork.count_m4(g)
# HigherOrderNetwork.count_m5(g)
# HigherOrderNetwork.count_m6(g)
# HigherOrderNetwork.count_m7(g)
# HigherOrderNetwork.count_m8(g)
# HigherOrderNetwork.count_m9(g)
# HigherOrderNetwork.count_m10(g)
HigherOrderNetwork.count_motif(g)
评论列表
文章目录