def parse_cora_sparse():
path = "%s/../data/cora/" % (current_dir,)
features, labels, id2index = _parse_cora_features_labels()
n_papers = len(id2index)
graph = nx.Graph()
with open(path + 'cora.cites', 'r') as f:
for line in f.xreadlines():
items = line.strip().split('\t')
tail = id2index[items[0]]
head = id2index[items[1]]
graph.add_edge(head, tail)
adj = nx.to_scipy_sparse_matrix(graph, format='csr')
return adj.astype('float32'), features.astype('float32'), labels.astype('int32')
评论列表
文章目录