def call_exps(params, data_set):
print('Dataset: %s' % data_set)
model_hyp = json.load(
open('gem/experiments/config/%s.conf' % data_set, 'r')
)
if bool(params["node_labels"]):
node_labels = cPickle.load(
open('gem/data/%s/node_labels.pickle' % data_set, 'rb')
)
else:
node_labels = None
di_graph = nx.read_gpickle('gem/data/%s/graph.gpickle' % data_set)
for d, meth in itertools.product(params["dimensions"], params["methods"]):
dim = int(d)
MethClass = getattr(
importlib.import_module("gem.embedding.%s" % meth),
methClassMap[meth]
)
hyp = {"d": dim}
hyp.update(model_hyp[meth])
MethObj = MethClass(hyp)
run_exps(MethObj, di_graph, data_set, node_labels, params)
评论列表
文章目录