def main():
domain_name = 'baidu.com'
domain_pkts = get_data(domain_name)
node_cname, node_ip, visit_total, edges, node_main = get_ip_cname(domain_pkts[0]['details'])
for i in domain_pkts[0]['details']:
for v in i['answers']:
edges.append((v['domain_name'],v['dm_data']))
DG = nx.DiGraph()
DG.add_edges_from(edges)
# ?????????IP?node
for node in DG:
if node in node_main and DG.successors(node) in node_ip:
print node
# ??cname???IP????
for node in DG:
if node in node_cname and DG.successors(node) not in node_cname: # ???ip?????cname
print "node",DG.out_degree(node),DG.in_degree(node),DG.degree(node)
# ?cname???????
# for node in DG:
# if node in node_cname and DG.predecessors(node) not in node_cname:
# print len(DG.predecessors(node))
for node in DG:
if node in node_main:
if len(DG.successors(node)) ==3:
print node
print DG.successors(node)
# print sorted(nx.degree(DG).values())
print nx.degree_assortativity_coefficient(DG)
average_degree = sum(nx.degree(DG).values())/(len(node_cname)+len(node_ip)+len(node_main))
print average_degree
print len(node_cname)+len(node_ip)+len(node_main)
print len(edges)
print nx.degree_histogram(DG)
# print nx.degree_centrality(DG)
# print nx.in_degree_centrality(DG)
# print nx.out_degree_centrality(DG)
# print nx.closeness_centrality(DG)
# print nx.load_centrality(DG)
dir_graph_analyse.py 文件源码
python
阅读 28
收藏 0
点赞 0
评论 0
评论列表
文章目录