def test():
mnist = input_data.read_data_sets("MINST_data", one_hot=False)
train_data = mnist.train.images.astype(np.float32)
fraction = 50
train_labels = mnist.train._labels[:fraction]
with open('sugbgraphs_labels.pickle', 'wb') as f:
pickle.dump(train_labels, f)
test_data = mnist.test.images.astype(np.float32)
print(train_data.shape)
patch_size = 4
n_ids = range(patch_size * patch_size)
A = np.ones((patch_size * patch_size, patch_size * patch_size))
np.fill_diagonal(A, 0)
cc = 0
train = []
bins = list(np.linspace(0.0, 1.0, 10))
for sample in train_data[:fraction]:
sample = sample.reshape((28, 28))
sugbg = []
patches = image.extract_patches_2d(sample, (patch_size, patch_size))
cc += 1
for p in patches:
if np.sum(p) == 0:
continue
G1 = nx.from_numpy_matrix(A)
dictionary = dict(zip(n_ids, np.digitize(p.flatten(), bins)))
nx.set_node_attributes(G1, 'label', dictionary)
sugbg.append(G1)
train.append(sugbg)
print(cc)
with open('sugbgraphs_train.pickle', 'wb') as f:
pickle.dump(train, f)
del train
test = []
for sample in test_data[:5]:
sample = sample.reshape((28, 28))
sugbg = []
patches = image.extract_patches_2d(sample, (patch_size, patch_size))
for p in patches:
if np.sum(p) == 0:
continue
G1 = nx.from_numpy_matrix(A)
p = np.histogram(p.flatten(), bins=np.linspace(0.0, 1.0, 10))[0]
dictionary = dict(zip(n_ids, p))
nx.set_node_attributes(G1, 'label', dictionary)
sugbg.append(G1)
test.append(sugbg)
with open('sugbgraphs_test.pickle', 'wb') as f:
pickle.dump(sugbg, f)
mnist_subgraphs.py 文件源码
python
阅读 25
收藏 0
点赞 0
评论 0
评论列表
文章目录