def textrank_text_summarizer(documents, num_sentences=2,
feature_type='frequency'):
vec, dt_matrix = build_feature_matrix(norm_sentences,
feature_type='tfidf')
similarity_matrix = (dt_matrix * dt_matrix.T)
similarity_graph = networkx.from_scipy_sparse_matrix(similarity_matrix)
scores = networkx.pagerank(similarity_graph)
ranked_sentences = sorted(((score, index)
for index, score
in scores.items()),
reverse=True)
top_sentence_indices = [ranked_sentences[index][1]
for index in range(num_sentences)]
top_sentence_indices.sort()
for index in top_sentence_indices:
print sentences[index]
document_summarization.py 文件源码
python
阅读 30
收藏 0
点赞 0
评论 0
评论列表
文章目录