def _generate_images(self, nb_batches, g_fp, r_idx, opt, show_info, queue):
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.autograd import Variable
#np.random.seed(42)
#random.seed(42)
#torch.manual_seed(42)
gen = GeneratorLearnedInputSpace(opt.width, opt.height, opt.nfeature, opt.nlayer, opt.code_size, opt.norm, n_lis_layers=opt.r_iterations, upscaling=opt.g_upscaling)
if show_info:
print("G:", gen)
gen.cuda()
prefix = "last"
gen.load_state_dict(torch.load(g_fp))
gen.train()
print("Generating images for checkpoint G'%s'..." % (g_fp,))
#imgs_by_riter = [[] for _ in range(1+opt.r_iterations)]
images_all = []
for i in range(nb_batches):
code = Variable(torch.randn(opt.batch_size, opt.code_size).cuda(), volatile=True)
#for r_idx in range(1+opt.r_iterations):
images, _ = gen(code, n_execute_lis_layers=r_idx)
images_np = (images.data.cpu().numpy() * 255).astype(np.uint8).transpose((0, 2, 3, 1))
#from scipy import misc
#print(np.average(images[0]), np.min(images[0]), np.max(images[0]))
#print(np.average(images_fixed[0]), np.min(images_fixed[0]), np.max(images_fixed[0]))
#misc.imshow(list(images_np)[0])
#misc.imshow(list(images_fixed)[0])
#imgs_by_riter[r_idx].extend(list(images_np))
images_all.extend(images_np)
result_str = pickle.dumps({
"g_fp": g_fp,
"images": images_all
}, protocol=-1)
queue.put(result_str)
calculate_inception_scores.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录