def _score_images(self, checkpoint_result, opt, queue):
from common.inception_score import get_inception_score
result = pickle.loads(checkpoint_result)
images = list(result["images"])
augseq = AUGMENTATIONS[opt.augment]
if augseq is not None:
images_aug = augseq.augment_images(images)
else:
images_aug = images
if images_aug[0].shape != (299, 299, 3):
images_aug_rs = [misc.imresize(image, (299, 299)) for image in images_aug]
else:
images_aug_rs = images_aug
#misc.imshow(np.hstack(list(images_aug[0:32])))
#misc.imshow(np.hstack(list(images_aug_rs[0:5])))
nb_splits = 1
print("Calculating inception score on %d images at shape %s and %d splits..." % (len(images_aug_rs), str(images_aug_rs[0].shape), nb_splits))
mean, std = get_inception_score(images_aug_rs, splits=nb_splits, bs=opt.inception_batch_size)
result_str = pickle.dumps(
([mean], [std]),
protocol=-1
)
queue.put(result_str)
calculate_inception_scores.py 文件源码
python
阅读 21
收藏 0
点赞 0
评论 0
评论列表
文章目录