def plotCluster( _x, labels, core_samples_mask, n_clusters_, f):
unique_labels = set(labels)
colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels)))
for k, col in zip(unique_labels, colors):
if k == -1:
# Black used for noise.
col = 'k'
class_member_mask = (labels == k)
xy = _x[class_member_mask & ~core_samples_mask]
ax = plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col,
markeredgecolor='k', markersize=6)
xy = _x[class_member_mask & core_samples_mask]
ax = plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col,
markeredgecolor='k', markersize=14)
#plt.title('Estimated number of clusters: %d' % n_clusters_)
#plt.axis('off')
#misc.imrotate(ax, 270)
index = f
print f
plt.axis('off')
plt.savefig(f)
image_rotate(f)
plt.close()
#plt.show()
return
评论列表
文章目录