def RandIndex(labels_true, labels_pred):
n_samples = len(labels_true)
contingency = contingency_matrix(labels_true, labels_pred, sparse=True)
a = sum(comb2(n_ij) for n_ij in contingency.data)
b = sum(comb2(n_c) for n_c in np.ravel(contingency.sum(axis=0))) - a
c = sum(comb2(n_c) for n_c in np.ravel(contingency.sum(axis=1))) - a
d = comb(n_samples, 2) - a - b - c
return (a + d) / comb(n_samples, 2)
评论列表
文章目录