def bound(self, corpus, gamma=None, subsample_ratio=1.0):
"""
Estimate the variational bound of documents from `corpus`:
E_q[log p(corpus)] - E_q[log q(corpus)]
`gamma` are the variational parameters on topic weights for each `corpus`
document (=2d matrix=what comes out of `inference()`).
If not supplied, will be inferred from the model.
"""
score = 0.0
_lambda = self.state.get_lambda()
Elogbeta = dirichlet_expectation(_lambda)
for d, doc in enumerate(corpus): # stream the input doc-by-doc, in case it's too large to fit in RAM
if d % self.chunksize == 0:
logger.debug("bound: at document #%i" % d)
if gamma is None:
gammad, _ = self.inference([doc])
else:
gammad = gamma[d]
Elogthetad = dirichlet_expectation(gammad)
# E[log p(doc | theta, beta)]
score += numpy.sum(cnt * logsumexp(Elogthetad + Elogbeta[:, id]) for id, cnt in doc)
# E[log p(theta | alpha) - log q(theta | gamma)]; assumes alpha is a vector
score += numpy.sum((self.alpha - gammad) * Elogthetad)
score += numpy.sum(gammaln(gammad) - gammaln(self.alpha))
score += gammaln(numpy.sum(self.alpha)) - gammaln(numpy.sum(gammad))
# compensate likelihood for when `corpus` above is only a sample of the whole corpus
score *= subsample_ratio
# E[log p(beta | eta) - log q (beta | lambda)]; assumes eta is a scalar
score += numpy.sum((self.eta - _lambda) * Elogbeta)
score += numpy.sum(gammaln(_lambda) - gammaln(self.eta))
score += numpy.sum(gammaln(self.eta * self.num_terms) - gammaln(numpy.sum(_lambda, 1)))
return score
评论列表
文章目录