def predict_log_proba(self,X):
assert self.class_column > -1
X1 = None
if isinstance(X, pyisc.DataObject):
assert X.class_column == self.class_column
X1 = X.as_2d_array()
elif isinstance(X, ndarray):
X1 = X.copy()
if X1 is not None:
logps = self.compute_logp(X1)
LogPs = [x-logsumexp(x) for x in array(logps).T] #normalized
return array(LogPs)
else:
raise ValueError("Unknown type of data to score:", type(X))
评论列表
文章目录