def create_model(list_of_features):
n_estimators=10000
n_jobs=4
x_train=data_frame[list_of_features]
y_train=data_frame.iloc[:,-1]
x_test=data_frame_test[list_of_features]
random_state=0
forest=BaggingRegressor(base_estimator=DecisionTreeRegressor(),n_estimators=n_estimators,random_state=random_state, n_jobs=n_jobs)
forest.fit(x_train[list_of_features],y_train)
Y_pred=forest.predict(data_frame_test[list_of_features].as_matrix())
i=0
file=open('submission.csv','w')
header="Id,SalePrice"
header=header+'\n'
file.write(header)
for id in (data_frame_test['Id']):
str="{},{}".format(id,Y_pred[i])
str=str+'\n'
file.write(str)
i+=1
评论列表
文章目录