def get_model_list(task_name):
model_list, name_list = [], []
model_list.append(linear_model.LinearRegression())
name_list.append('LR')
#
model_list.append(linear_model.SGDRegressor())
name_list.append('LR_SGD')
model_list.append(linear_model.Lasso(alpha = 1.0))
name_list.append('Lasso')
model_list.append(linear_model.Ridge (alpha = 1.0))
name_list.append('Ridge')
model_list.append(linear_model.LassoLars(alpha=.1))
name_list.append('LassoLars')
model_list.append(linear_model.BayesianRidge())
name_list.append('BayesianRidge')
model_list.append(KernelRidge(alpha=1.0))
name_list.append('KernelRidge')
model_list.append(gaussian_process.GaussianProcess(theta0=1e-2, thetaL=1e-4, thetaU=1e-1))
name_list.append('GaussianProcess')
model_list.append(KNeighborsRegressor(weights = 'uniform',n_neighbors=3))
name_list.append('KNN_unif')
model_list.append(KNeighborsRegressor(weights = 'distance',n_neighbors=3))
name_list.append('KNN_dist')
model_list.append(SVR(kernel = 'linear', C = 1, gamma = 'auto', coef0 = 0, degree = 2))
name_list.append('SVM_linear')
model_list.append(SVR(kernel = 'poly', C = 1, gamma = 'auto', coef0 = 0, degree = 2))
name_list.append('SVM_poly')
model_list.append(SVR(kernel = 'rbf', C = 1, gamma = 'auto', coef0 = 0, degree = 2))
name_list.append('SVM_rbf')
model_list.append(DecisionTreeRegressor())
name_list.append('DT')
model_list.append(RandomForestRegressor(n_estimators=100, max_depth=None,min_samples_split=2, random_state=0))
name_list.append('RF')
model_list.append(ExtraTreesRegressor(n_estimators=100, max_depth=None, max_features='auto', min_samples_split=2, random_state=0))
name_list.append('ET')
return model_list, name_list
评论列表
文章目录