def featureImp(dataset1):
import numpy as np
from sklearn import datasets
from sklearn import metrics
from sklearn.ensemble import ExtraTreesRegressor
import collections
#f = open('F:\kaggle\Final Project\\Book.txt')
# f.readline() # skip the header
#dataset = np.loadtxt(fname=f, delimiter=',')
# dataset = datasets.load_iris()
# fit an Extra Trees model to the data
# print(dataset)
mapElement = {}
X = dataset1[:, 1:406]
Y = dataset1[:, 0]
num_trees = 10
max_feature = 7
model = ExtraTreesRegressor(n_estimators=num_trees, max_features=max_feature)
model.fit(X, Y)
z = model.feature_importances_
#print("first", z.item(0))
for i in range(len(z)):
mapElement[z.item(i)] = (i + 1)
# od = collections.OrderedDict(sorted(mapElement.items()))
p = sorted(mapElement)
#print(p)
result = []
for i in range(len(p)):
result.append(mapElement.get(p[(len(p) - 1) - i]))
return (result)
#print(result)
# print(type(od))
#print(mapElement)
# print(od)
# model.fit(dataset.data, dataset.target)
# display the relative importance of each attribute
#print(model.feature_importances_)
评论列表
文章目录