def test_model_select_by_param():
iris = load_iris()
gbdt = GradientBoostingRegressor()
parameters = {'n_estimators': [1000, 5000], 'max_depth':[3,4]}
grid_search = GridSearchCV(estimator=gbdt, param_grid=parameters, cv=10, n_jobs=-1)
print("parameters:")
pprint.pprint(parameters)
grid_search.fit(iris.data[:150],iris.target[:150])
print("Best score: %0.3f" % grid_search.best_score_)
print("Best parameters set:")
best_parameters=grid_search.best_estimator_.get_params()
for param_name in sorted(parameters.keys()):
print("\t%s: %r" % (param_name, best_parameters[param_name]))
评论列表
文章目录