_gradient_boosting_regressor.py 文件源码

python
阅读 22 收藏 0 点赞 0 评论 0

项目:coremltools 作者: apple 项目源码 文件源码
def convert(model, input_features, output_features):
    """Convert a boosted tree model to protobuf format.

    Parameters
    ----------
    decision_tree : GradientBoostingRegressor
        A trained scikit-learn tree model.

    input_feature: [str]
        Name of the input columns.

    output_features: str
        Name of the output column.

    Returns
    -------
    model_spec: An object of type Model_pb.
        Protobuf representation of the model
    """
    if not(_HAS_SKLEARN):
        raise RuntimeError('scikit-learn not found. scikit-learn conversion API is disabled.')

    _sklearn_util.check_expected_type(model, _ensemble.GradientBoostingRegressor)
    def is_gbr_model(m):
        if len(m.estimators_) == 0:
            return False
        if hasattr(m, 'estimators_') and m.estimators_ is not None:
            for t in m.estimators_.flatten():
                if not hasattr(t, 'tree_') or t.tree_ is None:
                    return False
            return True
        else:
            return False

    _sklearn_util.check_fitted(model, is_gbr_model)

    base_prediction = model.init_.mean

    return _MLModel(_convert_tree_ensemble(model, input_features, output_features,
            base_prediction = base_prediction))
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号