def test():
iris = load_iris()
#print iris
#print iris['target'].shape
gbdt=GradientBoostingRegressor(n_estimators=1000, max_depth=4)
gbdt.fit(iris.data[:120],iris.target[:120])
#Save GBDT Model
joblib.dump(gbdt, 'GBDT.model')
predict = gbdt.predict(iris.data[:120])
total_err = 0
for i in range(len(predict)):
print predict[i],iris.target[i]
err = predict[i] - iris.target[i]
total_err += err * err
print 'Training Error: %f' % (total_err / len(predict))
pred = gbdt.predict(iris.data[120:])
error = 0
for i in range(len(pred)):
print pred[i],iris.target[i+120]
err = pred[i] - iris.target[i+120]
error += err * err
print 'Test Error: %f' % (error / len(pred))
评论列表
文章目录