def __init__(self, q1=.16, q2=.84,**params):
"""
Gradient boosted trees as surrogate model for Bayesian Optimization.
Uses quantile regression for an estimate of the 'posterior' variance.
In practice, the std is computed as (`q2` - `q1`) / 2.
Relies on `sklearn.ensemble.GradientBoostingRegressor`
Parameters
----------
q1: float
First quantile.
q2: float
Second quantile
params: tuple
Extra parameters to pass to `GradientBoostingRegressor`
"""
self.params = params
self.q1 = q1
self.q2 = q2
self.eps = 1e-1
评论列表
文章目录