def varius_classifiers():
# List of tuples of a classifier and its parameters.
clf_list = []
clf_linearsvm = LinearSVC()
params_linearsvm = {"C": [0.5, 1, 5, 10, 100, 10**10],"tol":[0.1, 0.0000000001],"class_weight":['balanced']}
clf_list.append( (clf_linearsvm, params_linearsvm) )
clf_tree = DecisionTreeClassifier()
params_tree = { "min_samples_split":[2, 5, 10, 20],"criterion": ('gini', 'entropy')}
clf_list.append( (clf_tree, params_tree) )
clf_random_tree = RandomForestClassifier()
params_random_tree = { "n_estimators":[2, 3, 5],"criterion": ('gini', 'entropy')}
clf_list.append( (clf_random_tree, params_random_tree) )
clf_adaboost = AdaBoostClassifier()
params_adaboost = { "n_estimators":[20, 30, 50, 100]}
clf_list.append( (clf_adaboost, params_adaboost) )
clf_knn = KNeighborsClassifier()
params_knn = {"n_neighbors":[2, 5], "p":[2,3]}
clf_list.append( (clf_knn, params_knn) )
clf_log = LogisticRegression()
params_log = {"C":[0.5, 1, 10, 10**2,10**10, 10**20],"tol":[0.1, 0.00001, 0.0000000001],"class_weight":['balanced']}
clf_list.append( (clf_log, params_log) )
clf_lda = LinearDiscriminantAnalysis()
params_lda = {"n_components":[0, 1, 2, 5, 10]}
clf_list.append( (clf_lda, params_lda) )
logistic = LogisticRegression()
rbm = BernoulliRBM()
clf_rbm = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)])
params_rbm = {"logistic__tol":[0.0000000001, 10**-20],"logistic__C":[0.05, 1, 10, 10**2,10**10, 10**20],"logistic__class_weight":['balanced'],"rbm__n_components":[2,3,4]}
clf_list.append( (clf_rbm, params_rbm) )
return clf_list
评论列表
文章目录