def fitAndPredict(self):
# classifier = LogisticRegression()
# classifier.fit(self.trainingSet, self.trainingLabel)
# pred_labels = classifier.predict(self.testSet)
# print 'Logistic:'
# print classification_report(self.testLabel, pred_labels)
classifier = SVC()
classifier.fit(self.trainingSet, self.trainingLabel)
pred_labels = {}
for user in self.testDict:
pred_labels[user] = classifier.predict([self.model.docvecs[user]])
# print 'SVM:'
# print classification_report(self.testLabel, pred_labels)
return pred_labels
# classifier = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,
# max_depth=1, random_state=0)
# classifier.fit(self.trainingSet, self.trainingLabel)
# pred_labels = classifier.predict(self.testSet)
# print 'GBDT:'
# print classification_report(self.testLabel, pred_labels)
#
# clf = AdaBoostClassifier(n_estimators=100)
# classifier.fit(self.trainingSet, self.trainingLabel)
# pred_labels = classifier.predict(self.testSet)
# print 'AdaBoost:'
# print classification_report(self.testLabel, pred_labels)
#
# clf = RandomForestClassifier(n_estimators=10)
# classifier.fit(self.trainingSet, self.trainingLabel)
# pred_labels = classifier.predict(self.testSet)
# print 'Random Forest:'
# print classification_report(self.testLabel, pred_labels)
评论列表
文章目录