def perform_adaboost(self,X_train_std,y_train,X_test_std, y_test): ##perform adaboost
ada = AdaBoostClassifier(n_estimators=10)
ada.fit(X_train_std, y_train)
train_score=cross_val_score(ada,X_train_std, y_train)
print('The training accuracy is {:.2f}%'.format(train_score.mean()*100))
test_score=cross_val_score(ada,X_test_std, y_test)
print('The test accuracy is {:.2f}%'.format(test_score.mean()*100))
X=X_test_std
y=y_test
resolution=0.01
#Z = svm.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
markers = ('s', 'x', 'o', '^', 'v')
colors = ('red', 'blue', 'green', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y_test))])
X=X_test_std
y=y_test
# plot the decision surface
x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
np.arange(x2_min, x2_max, resolution))
Z = ada.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
Z = Z.reshape(xx1.shape)
plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())
for idx, cl in enumerate(np.unique(y)):
plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],
alpha=0.5, c=cmap(idx),
marker=markers[idx], label=cl)
plt.show()
Adaboost.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录