def adaboost_predict(training_samples, training_labels, test_samples, test_lables,n_estimators=50, learning_rate=1.0):
from sklearn.ensemble import AdaBoostClassifier
clf = AdaBoostClassifier(n_estimators = n_estimators, learning_rate =learning_rate)
t0 = time()
clf.fit(training_samples,training_labels)
training_time = round(time()-t0, 3)
t0 = time()
pred = clf.predict(test_samples)
test_time = round(time()-t0, 3)
from sklearn.metrics import accuracy_score
acc = accuracy_score(pred,test_lables)
no_features = np.array(training_samples).shape[1]
training_samples = np.array(training_samples).shape[0]
test_samples = np.array(test_samples).shape[0]
with open("Temp\\results.txt","w") as outfile:
outfile.write("Alogirthm : {}\n".format("Adaboost"))
outfile.write("Estimators = {}\n".format(n_estimators))
outfile.write("Learning rate = {}\n".format(learning_rate))
outfile.write("No of features : {}\n".format(no_features))
outfile.write("No of training samples : {}\n".format(training_samples))
outfile.write("No of test samples : {}\n".format(test_samples))
outfile.write("Training time : {}\n".format(training_time))
outfile.write("Test time : {}\n".format(test_time))
outfile.write("Accuracy : {}\n".format(acc))
with open("Temp\\result_labels.csv","wb") as outfile:
np.savetxt(outfile,pred)
test.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录